Factorization Theorems for Hardy Spaces of the Bidisc, 0 < P ≤ 1
نویسندگان
چکیده
A factorization theorem is proved in the Hardy spaces Hp of the bi-upper half plane, 0 < p ≤ 1. The proof is based on some fundamental work of Chang-Fefferman on atomic decompositions of Hp.
منابع مشابه
Hankel Operators and Weak Factorization for Hardy-orlicz Spaces
We study the holomorphic Hardy-Orlicz spaces H(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in C. The function Φ is in particular such that H(Ω) ⊂ H(Ω) ⊂ H(Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω)...
متن کاملSome Fixed Point Theorems for Generalized Contractions in Metric Spaces with a Graph
Jachymski [ Proc. Amer. Math. Soc., 136 (2008), 1359-1373] gave modified version of a Banach fixed point theorem on a metric space endowed with a graph. In the present paper, (G, Φ)-graphic contractions have been de ned by using a comparison function and studied the existence of fixed points. Also, Hardy-Rogers G-contraction have been introduced and some fixed point theorems have been proved. S...
متن کاملFixed Point Theorems for Generalized Lipschitzian Semigroups in Banach Spaces
Fixed point theorems for generalized Lipschitzian semigroups are proved in puniformly convex Banach spaces and in uniformly convex Banach spaces. As applications, its corollaries are given in a Hilbert space, in Lp spaces, in Hardy space Hp , and in Sobolev spaces Hk,p , for 1<p <∞ and k≥ 0.
متن کاملThe Semi-commutator of Toeplitz Operators on the Bidisc
In this paper we characterize when the semi-commutator TfTg − Tfg of two Toeplitz operators Tf and Tg on the Hardy space of the bidisc is zero. We also show that there is no nonzero finite rank semi-commutator on the bidisc. Furthermore explicit examples of compact semi-commutators with symbols continuous on the bitorus T 2 are given.
متن کاملFlag Hardy Spaces and Marcinkiewicz Multipliers on the Heisenberg Group: an Expanded Version
Marcinkiewicz multipliers are L bounded for 1 < p < ∞ on the Heisenberg group H ≃ C × R (D. Muller, F. Ricci and E. M. Stein [25], [26]). This is surprising in that this class of multipliers is invariant under a two parameter group of dilations on C × R, while there is no two parameter group of automorphic dilations on H. This lack of automorphic dilations underlies the inability of classical o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996